汽车悬挂工作原理_汽车悬挂工作原理视频

       今天,我将与大家共同探讨汽车悬挂工作原理的今日更新,希望我的介绍能为有需要的朋友提供一些参考和建议。

1.汽车悬挂工作原理-解

2.什么是汽车悬架?悬架有哪些类型和作用?

3.汽车空气悬挂工作原理是什么?

汽车悬挂工作原理_汽车悬挂工作原理视频

汽车悬挂工作原理-解

       悬挂是车架(或承载式车身)与车桥(或车轮)之间的一切传力装置的总称。悬挂一般由弹性元件、减振器和导向机构组成,横向稳定杆也属于悬挂系统的范畴。

       <广告>

       悬挂根据结构可分为非独立悬挂和独立悬挂两基本类型。

       非独立悬挂与整体式车桥配合使用,主要用在商用车(载货汽车)或越野汽车的后悬挂。这种悬挂的左右车轮不相互独立,当一侧车轮因道路不平,相对车架或车身位置变化的同时,另一侧车轮也有同样的变化。

       独立悬挂与断开式车桥配合使用,主要用在轿车上。这种悬挂的左右车轮相互独立,当一侧车轮因道路不平,相对车架或车身位置变化的同时,另一侧车轮不受影响。

       独立悬挂按照结构形式又可分成横臂式、纵臂式和炷式(麦弗逊式),等等很多。因为前、后悬挂的职能和受力状况还是有很大的差别的,所以有必要按照前后轴各自分开来解释。

       前悬挂系统:目前轿车的前悬挂主要有双横臂式和麦佛逊式(又称滑柱摆臂式)两大类。

       A、双横臂式悬挂是最早用于轿车的结构形式,一般采用两个不等长的叉形摆臂上下布置,转向节分别用两个球头销与两个摆臂相连。螺旋弹簧套在筒式减振器外,多安排在下摆臂与车身之间。由于它结构复杂,质量大成本高,故应用较少。双横臂式悬挂由上短下长两根横臂连接车轮与车身,两根横臂都非真正的杆状,而是大体上类似英文字母Y或C,这样的设计既是为了增加强度,提高定位精度,也为减振器和弹簧的安装留出了空间和安装位置。同时,下横臂的长度较长,且与车轮中心大致处于同一水平线上,这样做的目的是为了在车轮跳动导致下横臂摆动时,不致产生太大的摆动角,也就保证了车轮的倾角不会产生太大变化。这种结构比较复杂,但经久耐用,同时减振器的负荷小,寿命长。

       B、麦佛逊式(即滑柱摆臂式)悬挂结构相对比较简单,只有下横臂和减振器-弹簧组两个机构连接车轮与车身,它的优点是结构简单,重量轻,占用空间小,上下行程长等。缺点是由于减振器和弹簧组充当了主销的角色,使它同时也承受了地面作用于车轮上的横向力,因此在上下运动时阻力较大,磨损也就增加了。且当急转弯时,由于车身侧倾,左右两车轮也随之向外侧倾斜,出现不足转向,弹簧越软这种倾向越大。

       后悬挂系统 :轿车后悬挂系统主要有多连杆式和摆臂式两种等。

       A、多连杆悬挂系统:过去的多连杆悬挂由于是在后车轴左右一体化(与中间的差速器刚性连接)的情况下使用的,会有平顺性差等缺点。现在的多连杆悬挂克服了过去多连杆悬挂的很多的不足,得到越来越多的应用(尤其是在中高级轿车上)。不管是成熟的“5连杆”也好,还是最新的“4连杆”也罢,都是为了更好地使车轮能适应各种不同的路况,让车轮的定位不会因路况和受力变化产生太大扰动,因为只有这样才能保证驾驶员的操控意志在车轮上得以充分的体现。另外5连杆悬挂构造简单、重量轻,可以减少悬挂系统占用的空间。个别的豪华轿车会应用全新的4连杆悬挂系统,会有更精确的转向控制。

       B、摆臂式后悬挂是仅车轴中间的差速器固定,左右半轴在差速器与车轮之间设万向节,并以其为中心摆动,车轮与车架之间用Y型下摆臂连接。“Y”的单独一端与车轮刚性连接,另外两个端点与车架连接并形成转动轴。根据这个转动轴是否与车轴平行,摆臂式悬挂又分为全拖动式摆臂和半拖动式摆臂,平行的是全拖动式,不平行的叫半拖动式

什么是汽车悬架?悬架有哪些类型和作用?

       原理:

       弹簧的弹性系数是通过橡胶皮腔中空气的流量来调节的。在短波路面或高速过弯时,皮腔中的部分气体会被锁定,在皮腔受压时,空气流量减小,令弹簧变硬,以减小车身起伏和提高车身稳定性。在普通路面上,所有空气都可以自由流动,皮腔受压时,空气流量加大,从而提供柔软的弹簧和最大程度的行驶舒适性。?

       Maybach 的空气悬挂中的空气始终保持6-10个巴的压力。空气悬挂还将传统的底盘升降技术融入其中。高速行驶时,车身高度自动降低,从而提高贴地性能确保良好的高速行驶稳定性同时降低风阻和油耗。慢速通过颠簸路面时,底盘自动升高,以提高通过性能。

       另外,空气悬挂系统还能自动保持车身水平高度,无论空载满载,车身高度都能恒定不变,这样在任何载荷情况下,悬挂系统的弹簧行程都保持一定,从而使减震特性基本不会受到影响。因此即便是满载情况下,车身也很容易控制。这的确是平台技术的一个飞跃。

       空气悬挂也并不是最近几年才研发的新技术,它们的基本技术方案相似,主要包括内部装有压缩空气的空气弹簧和阻尼可变的减震器两部分。

       与传统钢制悬挂想比较,空气悬挂具有很多优势,最重要的一点就是弹簧的弹性系数也就是弹簧的软硬能根据需要自动调节。例如,高速行驶时悬挂可以变硬,以提高车身稳定性,长时间低速行驶时,控制单元会认为正在经过颠簸路面,以悬挂变软来提高减震舒适性。?

       另外,车轮受到地面冲击产生的加速度也是空气弹簧自动调节时考虑的参数之一。例如高速过弯时,外侧车轮的空气弹簧和减震器就会自动变硬,以减小车身的侧倾,在紧急制动时电子模块也会对前轮的弹簧和减震器硬度进行加强以减小车身的惯性前倾。因此,装有空气弹簧的车型比其它汽车拥有更高的操控极限和舒适度。

汽车空气悬挂工作原理是什么?

       悬架定义:汽车的车架与车桥或车轮之间的一切传力连接装置的总称作用:

       传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。

       组成:

       (1)减振器功能:减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种。

       工作原理:在车轮上下跳过程中,减振器活塞在工作腔内往复运动,使减振器液体通过活塞上的节流孔,由于液体有一定的粘性和液体通过节流孔时与孔壁间产生摩擦,使动能转化成热能散发到空气中,从而达到衰减振动功能。

       (2)弹性元件功能:

       支撑垂直载荷,缓和和抑止不平路面引起的振动和冲击.弹性元件主要有钢板弹簧,螺旋弹簧,扭杆弹簧,气弹簧和橡胶弹簧等。

       原理:

       用具有弹性较高材料制成的零件,在车轮受到大的冲击时,动能转化为弹性势能储存起来,在车轮下跳或回复原行驶状态时释放出来。

       (3)导向机构作用:传递力和力矩,同时兼起导向作用。在汽车的行驶过程当中,能够控制车轮的运动轨迹。

       轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。

       比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。非独立悬架结构特点:

       两侧车轮由一根整体式车架相连,车轮连同车桥一起通过弹性悬架悬挂在车架或车身的下面。

       优缺点:

       非独立悬架具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。

       独立悬架独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车身下面的。

       其优点是:

       质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。

       缺点:

       独立悬架存在着结构复杂、成本高、维修不便的缺点。

       现代轿车大都是采用独立式悬架,按其结构形式的不同,独立悬架又可分为双叉臂式、拖曳臂式、多连杆式、连杆支柱式以及麦弗逊式悬架等。

       麦弗逊式悬挂当今世界用的最广泛的轿车前悬挂之一。

       麦弗逊式悬挂由螺旋弹簧、减震器、三角形下摆臂组成,绝大部分车型还会加上横向稳定杆。

       主要结构简单的来说就是螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并可以用减震器的行程长短及松紧,来设定悬挂的软硬及性能。

       麦弗逊式悬挂结构简单所以它轻量、响应速度快。

       并且在一个下摇臂和支柱的几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的接地面积最大化,虽然麦弗逊式悬架并不是技术含量很高的悬架结构,主要优点:结构简单、占用空间小、响应较快、制造成本低。

       主要缺点:

       横向刚度小、稳定性不佳、转弯侧倾较大。

       适用车型:中小型轿车、中低端SUV前悬架。双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小,双叉臂式悬挂通常采用上下不等长叉臂(上短下长),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂式简单些可以称之为简化版的双叉臂式悬挂。

       同双叉臂式悬挂一样双横臂式悬挂的横向刚度也较大,一般也采用上下不等长摇臂设置。

       双横臂式悬挂设计偏向运动性,其性能优于麦弗逊式式悬挂、但比起真正的双叉臂式悬挂以及多连杆前悬挂要稍差一些。

       国内采用双横臂式前悬挂的主要有:

       广州本田雅阁、一汽轿车马自达6以及北京奔驰-戴克的克莱斯勒300C。而采用双横臂式后悬挂的有东风本田思域。

       主要优点:横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰,侧倾小,可调参数多、轮胎接地面积大主要缺点:制造成本高、悬架定位参数设定复杂;适用车型:运动型轿车、超级跑车以及高档SUV前后悬架。多连杆独立悬挂可分为多连杆前悬挂和多连杆后悬挂系统。其中前悬挂一般为3连杆或4连杆式独立悬挂;后悬挂则一般为4连杆或5连杆式后悬挂系统,其中5连杆式后悬挂应用较为广泛。

       多连杆悬挂能实现主销后倾角的最佳位置,大幅度减少来自路面的前后方向力,从而改善加速和制动时的平顺性和舒适性,同时也保证了直线行驶的稳定性,因为由螺旋弹簧拉伸或压缩导致的车轮横向偏移量很小,不易造成非直线行驶。

       在车辆转弯或制动时,多连杆悬挂结构可使后轮形成正前束,提高了车辆的控制性能,减少转向不足的情况。

       多连杆悬挂在收缩时能自动调整外倾角,前束角以及使后轮获得一定的转向角度。

       通过对连接运动点的约束角度设计使得悬挂在压缩时能主动调整车轮定位(这个设计自由度非常大),能完全针对车型做匹配和调校以最大限度的发挥轮胎抓地力从而提高整车的操控极限。

       主要优点:舒适性能最好、操控性能出色主要缺点:制造成本最高、其占用空间大适用车型:高档轿车的绝佳搭档。拖曳臂式悬挂我们姑且称之为半独立悬挂,从悬挂的大分类来看,所有的悬挂可以被分成两大类,即:

       独立悬挂和非独立悬挂。

       但是在但纵臂扭转梁悬挂上,这两个分类变得有些模糊。

       从悬挂结构来看属于不折不扣的非独立悬挂,因为左右纵向摇臂被一跟粗大的扭转梁焊接在一起,但是从悬挂性能来看,这种悬挂实现的是具有更高稳定性的全拖式独立悬挂的性能。

       拖曳臂式悬挂本身具有非独立悬挂的存在的缺点但同时也兼有独立悬挂的优点,拖曳臂式悬挂的最大优点是左右两轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小。

       这种悬挂的舒适性和操控性均有限,当其刹车时除了车头较重会往下沉外,拖曳臂悬挂的后轮也会往下沉平衡车身,无法提供精准的几何控制。

       不同厂家对这种悬挂的称谓不同:如:纵臂扭转梁独立悬挂,纵臂扭转梁非独立悬挂,H型纵向摆臂悬挂等等。

       归根结底他们都是同一种悬挂结构——拖曳臂式悬挂,只是调教稍有不同。

       在拖曳臂式悬挂的设计过程中,横梁在纵臂上的安装位置不同其表现出来的性能会非常的大,若横梁安装越靠近纵臂与车身的连接点(图中带三个螺栓的地方),车子的舒适性就会越好但转弯时的侧倾也会大些。

       若横梁的安装在越靠近纵臂接近车轮中心,舒适性能会大打折扣,表现出来的特性则是以通过性和承载性为主。也更接近整体桥的设计。

       单纵臂扭杆梁式悬挂(俗称拖曳臂式悬挂):

       主要优点:结构简单实用、占用空间最小、制造成本低。

       主要缺点:承载性能差、抗侧倾能力较弱、减震性能差、舒适性有限适用车型:中小型汽车、低端SUV后悬挂连杆支柱悬挂严格意义上来说没有这种称谓,但是随着国内广州丰田凯美瑞的热销(凯美瑞采用了这种悬挂),连杆支柱这个名字被越来越多的人熟悉,我们也就姑且把这种悬挂称为连杆支柱悬挂。

       上一期说过拖曳臂式悬挂系统的最大优点是左右两轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小。

       但当其刹车时除了车头较重会往下沉外,拖曳臂悬挂的后轮也会往下沉平衡车身,无法提供精准的几何控制,所以某些车厂就会结合一些连杆来解决,就形成了复杂的多连杆悬挂——连杆支柱式悬挂连杆支柱与麦弗逊悬挂一样,用来支撑车体也是减振器支柱,他把减振器,减振弹簧组装在一个总成中。

       连杆支柱悬挂也有一跟粗大的减振器支柱,与麦弗逊悬挂的主要区别在于,悬挂下部与车身连接的A字型控制臂改成了三根连杆定位。

       转弯时产生的横向力来,主要由减振器支柱和横拉杆来承担。

       它具有与麦弗逊悬挂相近的操控性能,又有比麦弗逊悬挂更高的连接刚度和相对较好的抗侧倾性能。

       但是同样也存在麦弗逊悬挂的缺点,就是稳定性不好,转向侧倾还是较大,需要加装平衡杆来减小转向侧倾。

       相对纵臂扭转梁来说,它达到了全独立悬挂的结构要求,并且运动部件质量轻,悬挂响应性好,舒适性和操控性要优于纵臂扭转梁的,但比真正的多连杆悬架要差一些。

       不过其占有空间小于真正的多连杆式悬挂,成本也低于多连杆悬挂故被不少厂家采用。

       主要优点:结构简单、占用空间较小、制造成本较低。

       主要缺点:横向刚度依然有限、稳定性不佳、容易加剧前驱车的转向不足特性适用车型:中档车的后悬挂。

       本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

       汽车空气悬挂工作原理是利用空气压缩机形成压缩空气,并通过压缩空气来调节汽车的离地高度。一般装备空气弹簧的车型在前轮和后轮的附近都设有离地距离传感器,按离地距离传感器的输出信号。空气悬挂还使汽车增加一定的灵活性,当在高速行驶时,空气悬挂可以自动变硬来提高车身的稳定性,而长时间在低速不平的路面行驶时,行车电脑会使悬挂变软来提高车辆的舒适性。空气悬挂主要包括内部装有压缩空气的空气弹簧和阻尼可变的减震器两部分。

       好了,今天关于“汽车悬挂工作原理”的探讨就到这里了。希望大家能够对“汽车悬挂工作原理”有更深入的认识,并且从我的回答中得到一些帮助。